Effect of Obesity in critically ill patients; muscle quality as an explanatory outcome for the “Obesity Paradox”

J. Molinger1,2,3, MSc., Prof. dr. D. Gommer2, MD.
1. Department of Intensive Care Adults, Erasmus MC, University Medical Center Rotterdam, The Netherlands
2. BeLife, Clinical Human Performance laboratory, Rotterdam, The Netherlands
3. Center for Obesity “CGG”, Erasmus MC, University Medical Center Rotterdam, The Netherlands

Introduction:
Quantifying muscle responses to ICU stay and ascertaining the relevant histologic parameters could be a crucial step to forming personalized guidance for both mobilization- and nutrition-status. A feasibility study was performed, to assess the muscle wasting patterns of obese and non-obese patients within different subgroups upon admittance ICU.

Around 20% of the patients admitted to the ICU are obese (1). Obesity and overweight are associated with an increased risk of death in the general population (2), but in specific disease conditions a decrease in mortality has been reported in ARS and septic shock (3). This counterintuitive phenomenon is referred to as the "Obesity Paradox" (4).

The "Obesity Paradox":

• Rational Obesity Paradox 1:
 Fat mobilized from excess adipose tissue during critical illness provides energy more efficiently than exogenous macronutrients and could prevent lean tissue wasting (5).

• Rational Obesity Paradox 2:
 "Pre-Conditioning Cloud"; Low grade inflammation gives protective response (6)

• Opposed Rational Obesity Paradox 3:
 "A Paradox within a Paradox" Obese have higher Muscle-Quality corrected for muscle thickness.

Patients and Methods:
In a longitudinal observational study (n=26) different muscle histologic parameters were assessed, through the use of quantitative ultrasound (MuscleSound®) of the m. rectus femoris during sepsis, ARDS, neurotrauma, and after Lotx/LVAD. A total of 8 where catagorised as obese (BMI>30); n=4 ARDS/sepsis, Lotx/LVAD n=4 , and 6 non-obese ARDS/sepsis where compared to healthy metabolic obese (n=6). Assessment of Skeletal-Muscle-Quality-Index (SMQI) of the m. rectus femoris was taken every day at the same time. SMQI algorithm is based on the amount of intramuscular fat tissue (IMAT)/(7), muscle density/fibrosis, and corrected for the muscle thickness.

Discussion / Conclusion:
The results show that the speed of decline of the SMQI is extremely high in the non-obese ARDS/sepsis, compared with the obese ARDS/sepsis. SMQI upon admittance shows an distinctive higher value for the obese (control, ARDS/sepsis) and therefore could be a preditor of mortality in the critically ill.

References: